博客
关于我
[背包] 背包问题算法模板(模板)
阅读量:569 次
发布时间:2019-03-09

本文共 2485 字,大约阅读时间需要 8 分钟。

背包问题是系统学习动态规划的重要研究课题,其核心在于如何高效地解决位于有限容量中的最大价值选择问题。以下将从01背包延伸至多种背包模型,并介绍相应的优化方法和解决方案。

01背包问题

特点

  • 每个物品只能使用一次。
  • 需要考虑容量受限的最大化价值的选择问题。

逐步思路

  • 状态定义:设 f[i][j] 表示前 i 个物品,总体积不超过 j 时的最大价值。
  • 状态转移
    • 不选第 i 个物品f[i][j] = f[i-1][j]
    • 选第 i 个物品f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])
  • 空间优化
    • 使用滚动数组,仅保存当前层状态,更新至 j 时只需保存当前层数据。
  • 时间优化
    • 通过一维数组和逆序体积枚举,进一步降低空间复杂度。
  • 完全背包问题

    特点

    • 每个物品可以无限次地使用。

    思路

    • 状态定义:与01背包类似,f[i][j] 表示前 i 个物品,总体积不超过 j 时的最大价值。
    • 状态转移f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])
    • 优化方法
      • 滚动数组优化,采用逆序体积枚举策略,计算 f[j]

    多重背包问题

    特点

    • 每个物品有数量限制,必须不超过给定的最大数量。

    思路

    • 状态定义:类似01背包 f[i][j]
    • 状态转移:考虑不同数量的选择,如 f[i][j] = max(k=1 到 s[i], f[i][j-k*v[i]] + k*w[i])

    优化方法

    • 二进制优化:将物品的数量拆分成二进制倍增,增加效率。
    • 单调队列优化:对复杂的背包问题进行空间和时间的优化。

    分组背包问题

    特点

    • 物品分为若干组,每组只能选择一件物品。

    思路

    • 状态定义f[i][j] 表示前 i 组物品,总体积不超过 j 时的最大价值。
    • 状态转移:分组内的物品选择进行最大化。

    护身背包问题

    特点

    • 物品具有依赖性,形成树形结构。
    • 需要考虑树形的最优选择。

    思路

    • 采用动态规划和树形处理结合分组背包,分别处理每个子树。

    工具与代码

    通过以上方法,可以实现多种背包问题验证,并对结果进行分析。各优化方法的实现代码通常采用逆序枚举体积和空间优化技巧,能显著提升效率。

    各类背包问题的解决方案代码如下:

  • 01背包代码
  • #include 
    #include
    using namespace std;const int N = 1005;int v[N], w[N];int f[N][N];int main() { int n, m; cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i]; for (int i = 1; i <= n; ++i) { for (int j = 0; j <= m; ++j) { f[i][j] = f[i-1][j]; if (j >= v[i]) { f[i][j] = max(f[i-1][j], f[i-1][j - v[i]] + w[i]); } } } cout << f[n][m] << endl; return 0;}
    1. 完全背包代码
    2. #include 
      #include
      using namespace std;const int N = 1005;int n, m;int v[N], w[N];int f[N];int main() { int n, m; cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i]; for (int i = 1; i <= n; ++i) { for (int j = v[i]; j <= m; ++j) { if (f[j] < f[j - v[i]] + w[i]) f[j] = f[j - v[i]] + w[i]; } } cout << f[m] << endl; return 0;}
      1. 多重背包代码
      2. #include 
        #include
        using namespace std;const int N = 205;int n, m;int v[N], w[N], s[N];int f[N];int main() { int n, m; cin >> n >> m; for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i] >> s[i]; for (int i = 1; i <= n; ++i) { for (int j = 0; j <= m; ++j) { for (int k = 0; k * v[i] <= j; ++k) { if (k > s[i]) break; if (f[j] < f[j - k*v[i]] + k*w[i]) f[j] = f[j - k*v[i]] + k*w[i]; } } } cout << f[m] << endl; return 0;}

        多种背包问题的解决方案均可通过优化策略对空间和时间复杂度进行控制,达到高效解决问题的目的。

    转载地址:http://iuepz.baihongyu.com/

    你可能感兴趣的文章
    MySQL、Redis高频面试题汇总
    查看>>
    MYSQL、SQL Server、Oracle数据库排序空值null问题及其解决办法
    查看>>
    mysql一个字段为空时使用另一个字段排序
    查看>>
    MySQL一个表A中多个字段关联了表B的ID,如何关联查询?
    查看>>
    MYSQL一直显示正在启动
    查看>>
    MySQL一站到底!华为首发MySQL进阶宝典,基础+优化+源码+架构+实战五飞
    查看>>
    MySQL万字总结!超详细!
    查看>>
    Mysql下载以及安装(新手入门,超详细)
    查看>>
    MySQL不会性能调优?看看这份清华架构师编写的MySQL性能优化手册吧
    查看>>
    MySQL不同字符集及排序规则详解:业务场景下的最佳选
    查看>>
    Mysql不同官方版本对比
    查看>>
    MySQL与Informix数据库中的同义表创建:深入解析与比较
    查看>>
    mysql与mem_细说 MySQL 之 MEM_ROOT
    查看>>
    MySQL与Oracle的数据迁移注意事项,另附转换工具链接
    查看>>
    mysql丢失更新问题
    查看>>
    MySQL两千万数据优化&迁移
    查看>>
    MySql中 delimiter 详解
    查看>>
    MYSQL中 find_in_set() 函数用法详解
    查看>>
    MySQL中auto_increment有什么作用?(IT枫斗者)
    查看>>
    MySQL中B+Tree索引原理
    查看>>